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In this article, we describe an optical set-up designed to measure directly velocity 
gradients (strophometry). This strophometer is based on the analysis of the distortions 
of a fringe pattern ‘written ’ instantaneously in a flow field. We apply it to study the 
transverse velocity-gradient component au/ay in a plane Poiseuille flow at moderate 
Reynolds numbers. Mean values and different moments of the fluctuating gradient 
distribution related to viscous dissipation, vorticity dynamics and intermittency are 
obtained. These results are interpreted in terms of the large-scale structures which 
are present in the flow. 

1. Introduction 
Turbulent flows are characterized by the existence of fluctuations of the variables 

which describe the flows : temperature, pressure, density, chemical-species con- 
centrations, velocity components, . , . . One particular characteristic is the velocity 
field 6 = U+u, where U is the mean value of 0 and u is the fluctuating velocity, 
which is zero in laminar flows. Using hot-wire or laser-Doppler anemometry, a large 
amount of data has been obtained concerning the statistical properties of the 
fluctuating velocity (mean values, moments of different orders) and the correlations 
between the components of u(r, t ) .  However, a major drawback in the application of 
these concepts is the existence of internal intermittency caused by inhomogeneities 
of the fine-scale structure of turbulence (Batchelor & Townsend 1949). The statistical 
properties of the velocity-component derivatives - i.e. of the strain field tensor 
txu = 3ui/3x, - give essential information on several physical mechanisms occurring 
in a turbulent flow. In isotropic and homogeneous turbulence, the transfer of energy 
between the different scales, leading finally to dissipation of energy by viscous friction 
in the smallest eddies, can be calculated from the second-order moment of the au/ax 

- 
straining component : 2 

.=y.($). 

This result was first obtained by Taylor (1935). The production of vorticity associated 
with the stretching of vortex lines by the velocity-gradient field is related to the 
third-order moment of the au/ax component or skewness (Taylor 1938) : 
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Interesting experimental intermittency features were initially obtained by Kuo & 
Corrsin (1972) from measurements of the flatness factor (au/a~)~. Recently, Siggia 
(1981) has indicated that original results on intermittency of the small-scale 
structures could be provided by measuring fourth-order moments of several 
components. 

In  spite of the major importance of the velocity-gradient field in all these problems, 
very few direct measurements of velocity gradients have been taken. With hot- 
wire-anemometric techniques, one can measure velocity components and their 
temporal derivatives, for instance u and &/at; Taylor’s hypothesis, which assumes 
that the turbulent field is ‘locally frozen ’, relates the longitudinal component au/ax 
to the temporal derivative a u / a t  : 

au 1 au 
ax u at  
-=-- 

where U is the mean velocity. 
Combinations of hot-wire anemometers can give transverse components such as 

au/ay, but it is an intrusive measurement and has a limited spatial resolution 
(Comte-Bellot 1975). It is worth noting that, as long as thirty years ago (1954), 
Kovasznay had proposed using a hot-wire probe to measure vorticity. In spite of 
difficulties with data processing, such a sensor has been made and used in several 
experiments. Similarly, laser-Doppler anemometry (LDA) has been applied to study 
a wide range of hydrodynamic problems. With a combination of several anemometers 
one can get spatial derivatives of velocity components. Recently Lang & Dimotakis 
(1982) have developed a vorticimeter based on the simultaneous measurement of the 
velocity components at four points. Limitations of LDA techniques arise from the 
presence of small particles in the fluid; moreover, measurements near a wall or a 
stagnation point are not possible. 

Johnson (1975) was the first to propose the direct measurement of velocity-gradient 
components from the partial alignment of Brownian elongated rigid particles in a flow 
field. Following this idea, Fuller et al. (1980) have performed an original experiment 
which gave direct measurements of velocity gradients in laminar regimes from the 
analysis of the wavevector q of the light scattered by anisotropic tracers. A similar 
technique has been developed by Frish & Webb (1981) who measured vorticity 
components: they studied the temporal fluctuations of the light scattered by small 
reflecting spheres rotating under the action of vorticity. The limitations of such 
methods come from the presence of solid tracers, as for LDA techniques. 

Over the last five years, we have developed an original strophometric method, 
initially proposed by de Gennes (1977). It consists in ‘writing’ optically a periodic 
pattern of lines or two-dimensional grids within the flow and ‘reading’ the distortions 
which are experienced by this pattern at  a subsequent time t .  Previous articles (e.g. 
Fermigier et al. 1982) have described the optical set-up and given some preliminary 
results. In this paper, we discuss the application of the method to turbulent flows 
($2). Then we specify several features of the experimental investigation ($3). In 54, 
we study the transverse component i3u/ay of the velocity gradient in a turbulent plane 
Poiseuille flow at moderate Reynolds numbers (Re < 7000). The results are consistent 
with some simple geometrical properties of this turbulent flow field such as the 
existence of large structures in the channel. The technique can also be used to study 
the diffusive processes taking place in laminar and turbulent flows. This will be the 
object of the second part of the present work. 
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2. Direct measurements of velocity gradients (strophometry) 
2.1. The principles of strophometry 

The method presented in this article is based on the analysis of the distortions of a 
two-dimensional grating of lines or squares ‘written ’ within the flow instantaneously 
at  time t = 0. This grating, of spatial period p ,  can be formed from the interference 
pattern which is observed at the intersection of two beams of a pulsed laser or from 
the image of a periodic screen illuminated by a powerful flash (d’Arco et al. 1982). 
Here we use interferometric gratings for our experiments but in the Conclusions we 
shall mention some advantages of the image-projection apparatus for visualization 
experiments or for measurements of vorticity. 

The optically induced grating can be : 
a phase grating (Fermigier et al. 1980). The spatial variation of the light intensity 

causes a periodic heating of the liquid, which is converted into a modulation of the 
index of refraction. The efficiency is improved if one adds a dye to the flow ; in our 
experiments, we use methyl red in solution in organic liquids such as ethanol or 
acetone. The local temperature increases by about lo-’ K, which is low enough to 
avoid any buoyancy effect. The corresponding variations of the index of refraction 
are An x lov4. 

A transmittance grating if the dye has photochromic properties (Cloitre 
& Chauveau 1983). In this case the irradiation of the flow modifies the absorbance 
of the solution and changes its colour. 

The grating, of wavevector K (K = 21c/p), is convected by the velocity field and 
is distorted by the velocity-gradient field ; moreover, because of molecular or 
turbulent diffusion, it decays in time with a characteristic time constant 7 .  At time 
t (smaller than 7 )  we take a picture of the grating or we produce its diffraction 
pattern - that is its Fourier transform - by means of a second laser beam, called the 
probe beam. From an analysis of the changes which have occurred on the grating 
between times 0 and t ,  several original features of the flow are obtained: we can 
measure locally a velocity component u,  several components of the velocity gradient 
and diffusivity coefficients. 

2.1.1, Local-velocity measurements 
The translation of the grating in the flow does not cause any drift of the diffraction 

pattern but rather a shift of the frequency of the light in the diffracted spots by the 
Doppler effect. This leads to a temporal modulation of the diffracted light (figure 1) : 

AV = u/p .  

Thus, one can measure directly the velocity component u along the direction of 
the flow. This anemometric technique, which does not make use of any diffusing 
particle, was initially proposed and described by Fermigier et al. (1980). 

2.1.2. Velocity-gradient measurements 
From the deformation of the grating at time t ,  measured on a picture of the grating 

or from its diffraction pattern, a direct measurement of several components of the 
velocity gradient is obtained. Let us note, however, that the deformation is a 
Lagrangian integral between time 0 and time t as the grid moves with the flow. Two 
aasumptions have to be made in order to be able to determine the velocity-gradient 
components st,. First, we assume that the grating is convected in front of the probe 
beam with a constant mean velocity U ;  this is a good approximation because the 
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velocity fluctuations remain below 5 yo of the mean value U .  Secondly, we also assume 
that the eddy turnover time T is larger than t .  In practice T is of the order of several 
milliseconds for the smallest eddies while t is limited by diffusion to a fraction of a 
millisecond. Thus the gradient can be considered as constant during time t .  

When these conditions are satisfied the components of the velocity-gradient tensor 
atj are proportional to the displacement gradients rz, measured on the diffraction 
pattern : 

rij = sir.?. 

In $2.2 and the Appendices there is a complete analysis of the distortions which occur 
on a two-dimensional grating under the action of a velocity-gradient field. 

2.1.3. Study of diffwivity mechanisms 
The delay t between the ‘writing’ and ‘reading’ of the grating is limited by 

diffusion; moreover the sensitivity of our method depends directly on t .  In laminar 
flows, the grating fades out because of molecular diffusivity. This is the basis of the 
forced-Rayleigh-scattering technique which was first used by Eichler (1978) in a solid. 
In this case, the grating of interfringe p vanishes exponentially over a characteristic 
time : 

T = p2/4n2D, 

where D is the thermal or mass-diffusivity coefficient. 
In  turbulent flows, the processes by which the grating disappears were studied first 

by Fermigier et al. (1982), then by Limat (1984). Let us recall their main conclusions: 
at short times t ,  the spatial distribution of the diffracted intensity in the diffraction 
spots, around the wavevector K, has the same Gaussian variation as the incident 
probe beam. At later times, the convective effects of turbulent mixing lead to a 
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FIGURE 2. Distortions of a two-dimensional grating in two experimental situations: (a) pure 
straining field; ( b )  shear flow. At time 0, the fringes are horizontal, the diffracted spots are at &KO. 
At time t ,  the grating has been distorted; the resulting displacements of these spots are simply 
related to the velocitv gradient: " -  

au au 
ax aY 

(a) AK = Ko--t; (b)  A K =  KO-t. 

broadening of the diffraction spots due to fluctuations 6K of the wavevector 
around K. To avoid any modification in the shape of the diffracted spot, we have to use 
a small-interfringe grating since it is less sensitive to convective effects and vanishes 
because of molecular processes only. Table 1 gives the current experimental parameters 
for each situation ; the resulting uncertainties in velocity-gradient measurements are 
indicated too. 

2.2. Analysis of the distortion of a two-dimensional grating 
in a velocity-gradient field 

In  this section, we study the distortions experienced by a two-dimensional grating 
'written' within a flow. We will show in $3  how to make such a grating. Two typical 
experimental situations encountered in this article are shown on figures 2 (a)  and (b ) .  
The z-axis is the streamwise direction; y is the spanwise direction perpendicular to 
the parallel plates of the channel; u, v,  w are the three components of the velocity 
field. We will assume that the grating cannot experience rotations out of its (2, ?/)-plane, 
which is the plane of the mean flow. This assumption is discussed and analysed in 
Appendix A, where we study the general case of a three-dimensional velocity field. 

Figure 2 (a)  shows the grating submitted to a pure straining field. Initially, before 
any deformation, the diffraction pattern obtained from a probe beam which is 

8-2 
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Phaae grating Transmittance grating 
D N cma/s D N cma/s 

Laminar flow t1.300ps t ~ 3 0 m s  
30 pm < p,,, < 70 pm 
As N 15 s-l 

30 pm < p,,, < 70 pm 
As N 2 

Turbulent flow tN150ps  
Pmax ‘Y 30 ~m 
As N 30 s-l 

TABLE 1. Current parameters under different experimental conditions. t denotes the time elapsed 
between the ‘writing’ of the grating and its ‘reading’; p,,, is the optimum interfringe; 8 is the 
resulting uncertainty in velocity rneaaurements. 

perpendicular to the lines of the grid is composed of two diffraction spots located at  
+KO. At a subsequent time t ,  because of the straining component, the interfringe of 
the grating increases and, consequently, the two diffracted spots get closer at + K. 
The displacement KO - K is simply related to the value of au/& (see Appendix A) by : 

The simple shear flow of figure 2 ( b )  can be divided into a rotation, which causes 
a rotation of the diffracted spots, and a strain, which changes the interfringe. As a 
result, the two diffracted spots move on a horizontal line from their initial position. 
The corresponding displacement is also equal to lKo-A = Ko(au/&j) t and leads to 
a direct determination of the shear component &lay. 

A similar analysis of the deformations of a square-mesh grating would give a 
complete determination of the velocity-gradient components in the (2, y )-plane ; in 
particular, we would get the vorticity component wz which is perpendicular to the 
(z,y)-plane. We have proposed the development of a vorticimeter based on this 
principle (d’Arco et al. 1982). 

3. Experimental set-up 
The experimental apparatus, shown in figure 3, can be separated into an optical 

arrangement, which effectively marks the grating within the flow, and a probing part, 
which enables the analysis of the distortion of this grating. The whole set-up, as well 
as the flow cell, is placed on an optical granite table with an excellent vibrational 
stability. We created a periodic pattern inside the flowing liquid using two laser beams 
from a pulsed laser YAG (10 mJ, 20 ns) followed by a frequency doubler and a 
symmetrical beam splitter; details of these devices can be found in an earlier paper 
(Fermigier et al. 1982). These two coherent beams of wavelength A = 0.53 pm and of 
diameter g4 = 4 mm, are initially parallel and separated by a distance 8 = 36 mm. The 
two cylindrical lense Lc,-Ld, arrangement is a teleobjective which causes the 
convergence of the beams and the formation of the grating in the intersection volume 
of the beams; Lc, Cf, = + 600 mm) and Ld, (f = -50 mm) are respectively a 
convergent and a divergent lens; the focal length (F,) of the Lc,-Ld, arrangement 
depends on the distance a between Lc, and Ld,: 

1 1 . 1  a 
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F’IGURE 3. Experimental set-up. The pulsed laser beam is split into two beams which interfere in 
the flow cell. A blow-up of these beams in their crossing region shows the geometry of the grating 
which is ‘written’ within the flow: the lengths l,, Zu, 1, are controlled by lenaes Lc,, Lc,, Id,. The 
grating is detected by means of an He-Ne laser beam which realizes its diffraction pattern in the 
focal plane of lens L. A photodiode array (DARSS) records the positions of the diffracted spots; 
these are stored and treated by the multichannel analyser (AMC). 

These two lenses determine the following geometrical characteristics of the grating 

(i) the interfringe p: 
(see Cloitre 1982) 

p = AF,/S. 

By changing the distance a, we can vary the interfringe of the grating from 30 to 
70 pm; 

(ii) the longitudinal dimension of the grating: 

8 A q  
1, = - xq5a 

In  all our experiments, Z, ia greater than the channel depth; 
(iii) the vertical dimension of the grating: 

4 4  
1, = - 

Xq5 ’ 

roughly 1 mm in our experiments, large enough to ensure that the probe beam always 
intercepts the grating when it is convected downstream. 

The cylindrical convergent lens Lc, (F2 = +400 mm) which is confocal with the 
Lc,-Ld, arrangement makes the grating thin in the z-direction: 
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where 1, is roughly 50pm. Consequently, the grating can be regarded as 
two-dimensional and the analysis of $2.2 can be applied. Moreover there is no Bragg 
diffraction effect. 

The grating is observed after a time delay t ;  the probe beam of a He-Ne laser 
(10 mW; A = 6328 A), which is not shown on figure 3, is diffracted by the distorted 
grating. The diameter of the probe beam limits the spatial resolution of the method, 
roughly 300 pm. This prevented us from performing measurements in the proximity 
of the walls of the channel. However, using evanescent waves as a probe beam, Allain, 
Ausserre & Rondelez (1982) were able to perform similar experiments very near a wall ; 
their method could be extended here. The diffraction pattern is observed in the focal 
plane of a lens L (f = 480 mm). A photodiode array (DARSS: Diode Array Rapid 
Scan Spectrometer) records the diffracted light in spot + 1.  It consists in a linear array 
of 256 photodiodes with a 50 pm centre-to-centre spacing; the intensity a t  each point 
results from the integration of the light which is received on the surface of a sensor. 
This diode array is monitored by a multichannel analyser Northern Tracor 1710 
equipped with a microcomputer LSI 11. In  all experiments the value of the 
signal-to-noise ratio of the detection system, defined as the ratio between the 
maximum intensity in one diffraction spot and the continuous base line in the absence 
of any diffraction effect, is at  least 10. 

Let us now describe the chain of events which occurs during a measurement 
sequence (see figure 3). The microcomputer AMC triggers the YAG laser (1); the 
instant t = 0 at which the grating is ‘written’ in the flow is given by the pulse 
delivered by the phototransistor (PT) (2). Then, the signal generator (SG) delivers 
a pulse of duration t,  after a time delay t (3) ; this pulse triggers an acoustic modulator 
(AM), which is a shutter controlling the duration t,  of the probe beam: at time t ,  the 
Fourier transform of the grating is recorded by the diode array during the exposure 
time t,. Finally, the microcomputer digitizes the data available on the diode-array 
sensors and puts them in the central memory (4). They can be displayed on a screen. 

Because of the linear geometry of the diode array, one can only resolve the 
diffraction pattern in one dimension at  a time and, consequently, determine only one 
velocity-gradient component, either &/ax or &lay. Here, in a vertical plane 
Poiseuille flow, we have measured au/ay (the DARSS detector is horizontal); in 
turbulent flows, we have checked that the fluctuations of the longitudinal component 
au/az are small (< 400 s-l) so that the diffracted spots do not move vertically out 
of the diode array, during the time interval t .  Records of the spatial distribution of 
the diffracted-spot intensity for two different events in laminar flows are shown on 
figure 4;  one of them is obtained at  t = 0, the other one at t = 400 ps. As described 
above, the intensity decreases because of molecular-diffusion processes but the shape 
of the diffraction spots remains Gaussian. The shift of the diffracted spot between 
0 and t is directly related to the velocity-gradient component under study. In 
turbulent flows, the intensity distribution in the diffracted spots is still Gaussian at 
short times (t < 150 ps). In  all cases we have fitted the experimental points to a 
Gaussian curve, the parameters of which are adjusted by a least-square method: this 
technique, where the velocity gradient is inferred from the shift in the distribution 
as a whole, is analogous to ‘adapted filter detections’ used in signal processing. It 
enables a precise determination of the position of the diffracted spots and consequently 
of the velocity-gradient component (Asx. = 15 s-l in laminar flows and Asxy = 30 s - ~  
in a turbulent regime). 
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FIGURE 4. Diffraction spot + 1 recorded on the diode array detector at - 
t = 0 and t = 400 ps (in laminar regime). 

4. Strophometric studies of a turbulent plane Poiseuille flow 
The channel has a rectangular section, of aspect ratio 8 (5 mm x 40 mm). The 

measurements are performed far from entry ( FZ 700 mm) so that the velocity profile 
is completely established (Cloitre 1982, p. V, 1,  2) along the y-direction. 

Curve (a) on figure 5 gives the profile of the velocity-gradient component au/ay 
in a laminar regime : Urn,, = 42 2.5 cm/s ; the uncertainty of the measurements is 
about 15 s-l. This experimental result agrees with flow-rate data. As expected, this 
gradient profile varies linearly from zero in the centre of the cell to a value 4Urn,,/d 
at the walls, according to Poiseuille’s law, where d is the channel width. 

Curve (b) gives the variation of the component au/ay just before the laminar- 
turbulent transition. The critical Reynolds number Re = Udlu, where U is the mean 
velocity downstream and u the kinematic viscosity, is defined as the value above 
which fluctuations in values of au/ay are observed; in our experiment, we measured 
Re, = 1050 & 30. This value is far below the critical Reynolds numbers given by other 
authors (see for instance Nishioka, Iida & Ichikawa 1975) using well-controlled entry 
conditions in the Poiseuille-flow channel. In  the present experiment the conditions 
of entry of the fluid at the top of the channel are not properly controlled. Our results 
are rather similar to those of Carlson, Widnall & Peeters (1982), with Re, N 1000. 
The wide variation in the available experimental data for Re, is due to the growth 
(or decay) of different initial disturbances which may exist in the flow. In particular 
Orszag & Kells (1980) have shown numerically that three-dimensional finite- 
amplitude disturbances have a strongly destabilizing effect and can drive the 
transition in a plane Poiseuille flow down to Reynolds numbers of the order of 1OOO. 

At Re = 1200, the mean-velocity gradient is obtained from an ensemble average 
over 600 identical measurements at the same point. On curve (c) of figure 5,  we 
observe that turbulence manifests itself as a sharp reduction in the mean-gradient 
values in the centre of the flow field and a rapid increase near the walls. The data 
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FIGURE 5. Mean velocity-gradient profile (szy = aU/ay) at different Reynolds numbers: -0- 
(curve a) ,  in laminar regime (Urn,, = 42 2.5 cm/s) ; . . . * * * (curve b) ,  just before Re, x 1050; 
-A- (curve c), at Re = 1200. 

for a larger value (Re = 3800) agree with the classical structure of a turbulent shear 
flow near a plate (figure 6); we use the non-dimensional distance to the wall y+: 

yf = yu*/v, 

where U* = 7.8 cm/s is the wall velocity, whose value is estimated from flow-rate 
measurements. 

The inner zones (viscous sublayer and buffer regions) are located near the walls 
0 c y+ <25; we cannot make measurements in the viscous layer (y+ < 5 )  because of 
the finite width of the probe beam. In spite of the low value of the Reynolds number, 
for y+ > 25, we observe on figure 6 a logarithmic zone, as in fully developed flows, 
which is given by : 

dU/dy+ % 2.7/yf. 

In this intermediate region, the mean velocity increases logarithmically with y as: 

U/U* x 2.7 logy+. 

The experimental value of the slope agrees with independent data reported by 
Tennekes t Lumley (1971). 
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800 
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FIGURE 6. Mean-velocity-gradient profile (.szy = aU/@) versw the non-dimensional distance to the 
wall y+, at Re = 3800. The viscous sublayer is indicated by / / / / I / ,  and the centre of the flow by 
C. 

4.1. Statistical distributions of the transverse component au/ay 
The histograms of the fluctuating-velocity gradient give valuable information on 
the flow-field characteristics. The statistical distributions can be analysed from the 
different moments of &lay. In  addition to the coefficient E = 7 . 5 v m ,  the 
experimentalists usually measure non-dimensionalized parameters such as the skew- 
ness S and flatness F factors: 

In the Introduction, we have defined these statistical quantities and their physical 
meaning in a homogeneous turbulent field: kinetic energy of the turbulent eddies E ,  

production of enstrophy by stretching of the vorticity lines S, intermittency effects F. 
Because of vortex stretching, S is non-zero in most isotropic turbulent flows; a 
negative skewness is a feature of strongly nonlinear interactions in a turbulent flow 
(Taylor 1938). For a Gaussian velocity-gradient field F = 3; but, in a turbulent flow, 
generally F =l= 3 because of intermittency. 
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FIGURE 7. Histograms of the fluctuating gradient component aulay: (a) at y+ = 80; (b )  at y+ = 120 
(in the centre of the flow field) ; (c) at y+ = 160 (c is the reflection of a about a). Each curve results 
from 300 identical meaaurements at the same point. 

Experiments, including measurement of some velocity derivatives, have been 
performed in different turbulent flows : jets, wakes, boundary layers (see Sreenivasan 
& Antonia 1979). The streamwise derivative au/ax is easily obtained using the Taylor 
hypothesis and has been studied widely. On the other hand, the experimental 
measurement of the transverse component au/ay is technically difficult using 
traditional anemometric methods, such as hot-wire instrumentation; to our 
knowledge, Tavoularis & Corrsin’s (1981) work, which was performed on a turbulent 
shear flow, is the only previous work reporting au/ay measurements. 

Histograms of the fluctuating-velocity-gradient component au/ay obtained by 
direct strophometry as described in 942 and 3 are given in figure 7. Each of these 
histograms was constructed from about 300 identical measurements at one point. In 
spite of the small size of these statistical distributions we noticed a good reproducibility 
in the statistical behaviour of the aulay component. We have analysed these 
statistical distributions from the different moments of au/ay. The variation of the 
skewness of au/ay from one wall of the channel to the other is shown on figures 7 
and 8 and it can be seen that : 

(i) in the centre of the flow field, the histogram (figure 7 b )  is symmetric and 
S = OkO.05. This suggests that the evolution and the value of the transverse 
component au/ay do not depend on the nonlinear interactions which occur during 
the vortex-line-stretching process. 

(ii) the algebraic sign of the transverse component’s skewness varies according to 
the sign of the mean-velocity-gradient component dU/dy (figure 7a and c) :  

This result is similar to that of Tavoularis & Corrsin, which was obtained with a set 
of hot-wire anemometers at higher Reynolds numbers. 
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FIGURE 8. Value of the skewness S of aulay versus y+ 
(C indicates the centre of the flow). 

(iii) The arithmetic value of the skewness S increases from zero in the centre of 
the channel to a maximum value at y+ = 40, then decreases in the neighbourhood 
of the walls of the channel (figure 8). 

In our experiments, the flatness factor, F N 4 k0.5, is close to values of F obtained 
for the component au/ay at equivalent Reynolds numbers (Monin & Yaglom 1970, 
p. 640). However, there are too few turbulent events in our statistical evaluation: 
this explains the large uncertainty in F; consequently, our measurements of the 
flatness factor could not show a significant variation of F with y .  

4.2. C;reometrical interpretation of S-values 
The variation of S with the distance to the walls can be interpreted geometrically 
in terms of the existence of large structures in the Poiseuille flow at low Reynolds 
numbers. We do not intend to present a review on the generation of structures and 
the appearance of turbulence in a channel flow but to give a personal interpretation 
of the results obtained from the statistical distributions of &lay. 

Flow visualizations as well as direct measurements have revealed the existence of 
ejections of slow lumps of fluid from the walls into the bulk of the flow. Different 
conceptual models have been proposed to explain the generation of these ‘bursts ’ (for 
a review of these works see Cantwell 1981) ; they are based on the existence near the 
walls of long cylindrical eddies, which are perpendicular to the main flow (Townsend 
1950). They successively undulate, rise upwards because of the mutually induced 
velocities of the kinked loops (Biot & Savart’s effect), are stretched by the mean 
downstream flow and, finally, ‘pump’ slow fluid away from the wall (Blackwelder 
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FIQURE 9. Qualitative explanation of the measured non-zero 
skewness S in turbulent Poiseuille flow. 

& Eckelmann 1979). Figure 9 suggests that these ‘bursts’ of slow fluid are responsible 
for the local existence of an inflexion point in the instantaneous-velocity profile. This 
point is highly unstable and a Helmholtz-type instability can develop on it. 
Transverse vortices appear, which are convected downstream and their size increases 
aa in the mixing-layer problem. These coherent eddies have been observed experi- 
mentally in a boundary layer, for instance by Kim, Kline & Reynolds (1971), and J. M. 
Wallace (private communication 1982) in the special case of a transitional boundary- 
layer flow. ‘Bursts ’ are accompanied by injection of high-speed fluid, called ‘sweeps’, 
which occur in the neighbourhood of the walls and ensure the mass balance at y = 0. 
However, these burst and sweep events are observed in different zones of the 
turbulent flow (Elena, Fulachier & Dumas 1979). The bursts which lead to the most 
coherent structures (i.e. transverse vortices in our model), only occur when y+ 
becomes large enough. At  the same time, sweeps are dominant near the walls. 

The coherent transverse vortices related to the ‘bursts ’, as described above, induce 
high values of the vorticity component and consequently of the au/ay velocity-gradient 
component. These large-amplitude fluctuations of short duration, which are positive 
(au/ay % 0) or negative (au/ay < 0) according to the positive or negative slope of the 
mean-velocity profile (see figure 9), bring important contributions to the skewness 
of the aulay component. Note that, after such a turbulent event leading to au/ay % 0 
at a given point, we must have, at a subsequent time, au/ay < 0 a t  the same point 
in order to satisfy the condition = 0. The result of this model is in agreement 
with the variation of the algebraic sign of S given in $4.1. In the centre of the flow, 
the large-scale structures come symmetrically from either side, so that S = 0. On the 
other hand, the decrease of S near the walls of the channel might be due to injections 
of high-speed fluid, which are dominant in this zone of the turbulent flow. 
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FIGURE 10. Profile of the non-dimensional turbulent kinetic energy P contained in transverse 

vortices compared to the histogram of burst-frequency occurrence, from Kim et d. (1971). 

On figure 10, we have plotted the kinetic energy P contained in the transverse 
vortices which develop near the inflexion point, as suggested above : 

P is proportional to the second moment of au/ay, and is non-dimensionalized by the 
mean wall velocity and the viscosity. Pincreases continually as we approach the walls. 
On the same figure, we have reproduced the histogram giving the locations of the 
'bursting' processes versw y+, determined by Kim et al. (1971); the two curves have 
been rescaled at y+ = 110 to permit an eaay comparison. Assuming that all the bursts 
bring equal contributions to the value of P, the agreement between the shape of the 
curve P and of the histogram is evidence that the kinetic-energy production is 
associated with the 'bursting ' phenomenon. 

5. Conclusion 
Let us recall first the limitations arising from several specific features of our method. 

These include the chemical tracers which are used to create a periodic pattern in the 
flow, the optical arrangement and the flow field itself. We shall discuss briefly some 



232 M .  Cloitre and E. Guyon 

possible improvements. Regarding the tracers which are added to the flow, 
simultaneously with the present experiment, which is based on local heating, 
photochromic molecules of different types, e.g. mercury dithizonate and spiropyrans, 
were being studied and applied to some simple cases (d’Arco et al. 1982; Cloitre & 
Chauveau 1983). In spite of these improvements, in wide channels absorption of the 
laser beams by the dye in solution weakens the intensity of the grating in the central 
part of the flow cell. Using a pulsed laser more powerful than the present YAG laser 
could also overcome the effect of absorption and broaden the range of application 
of this experiment. Moreover, with square grids, written by means of two perpendicular 
fringe patterns or by direct imaging, one can completely determine components of 
the velocity-gradient field in a plane and, of utmost importance, the vorticity 
component (Fermigier et al. 1984). 

Finally, in the present experiment, the Reynolds-number values are limited to 
about lo4. It would be interesting to investigate flows with larger Reynolds numbers. 
In  particular, in isotropic and homogeneous turbulence, the simultaneous measure- 
ment of several components of the velocity-gradient field could be a powerful tool 
to study intermittency effects. Indeed it was demonstrated by Siggia (1982) that the 
general tensor formed from 4 velocity-gradient components at a point, i.e. 

q . . . q  = ai Ujak ~Iamu, a p u q ,  

possesses four scalar invariants which parametrize intermittency effects in isotropic 
and inhomogeneous turbulence. From the study of the local distortions of a 
parallel-fringe grating such as those considered in $2.2, one could get three invariants 
of Tj...* instead of only one as with traditional anemometry. 

In  conclusion, we have given here a first quantitative application in a turbulent 
flow field of an optical experimental set-up which provides direct measurements of 
the velocity-gradient component. This technique has two main advantages over 
classical techniques such as hot wire and LDA: 

it is non-intrusive since it requires neither a dye-injection system nor an insertion 
of probes ; 

the tracer particles do not modify the flows locally as may happen with microballs 
or dust particles. 

The values of the different moments of the transverse component au/ay have been 
interpreted in terms of geometrical effects due to large-scale structures. One can also 
use this forced-Rayleigh-scattering technique to study diffusivity mechanisms in 
turbulence. This has been done by Limat (1984) in an identical experimental situation 
(Poiseuille flow) and will be described in a second article. In  the same spirit, the 
present technique could be extended to other classes of problems dealing with 
heterogeneous transparent media such as flows in gels or index-matched porous 
media. 

We thank J. C. Charmet for help in the calculations in the Appendix and P. Jenffer 
for assistance in the experimental part of the work. We acknowledge discussions on 
the interpretation of our experiments with R. Dumas and J .  Wallace. 
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FIQURE 11. Distortions of a grating in a three-dimensional velocity-gradient field: at  time 0, the 
grating is horizontal and the diffracted spots are at  *KO; at  time t, the grating has been distorted 
and the diffracted spots are at  K, and K-. The displacements AK+ and AK- are. given by (A 7). 

Appendix A. Distortions of a two-dimensional grating in a 
velocity-gradient field 

In  this section, we study the distortions experienced by a thin grating, 'written' 
within a three-dimensional velocity gradient field. Figure 11 shows the geometry of 
the grating: the z-axis is the streamwise direction and y is the spanwise direction 
perpendicular to the parallel plates of the channel; u, w, w are the three components of 
the velocity field. The incident probe beam has a constant wavevector ql ,  which is 
perpendicular to the grating at t = 0; the wavevector of the diffracted beam q2 makes 
an angle 0 with the vector normal to the plane of the grating n. We associate a vector 
G to this grating such that, before any distortion: 

G = n x (42-41). (A 1) 

In  a three-dimensional velocity-gradient field, this grating experiences (a)  deforma- 
tions which lead to a change of the 0 value and (b )  a rotation of its plane which is 
no longer perpendicular to the incident wavevector ql ;  this leads to a change of its 
normal vector which becomes n + An. 

Derivation of (A l),  keeping q1 constant, gives 

A G = A n ~ ( q , - q ~ ) + n x A q , .  

One deduces the change of q2 value: 

Instead of studying separately the influence of (a)  and ( b )  on AG and An, we associate 
a fictitious grating of wavevector k to vector G, such that: 



234 M .  Cloitre and E. Guyon 

(A 3) 
'I before deformation G = n x k ;  

after deformation AG-Anx(q,-q,)  = n x A k . j  

In Appendix B ,  we give the action of a deformation field, which is characterized 
by the tensor r, on the reciprocal space vector k: 

Ak = - tr* k 
(tr is the r transposed tensor). 
From (A 1) and (A 3) and (A 4)) we obtain 

AG-bx(q2-41)  =-nxtr(q2-q1), (A 5 )  

(A 6) 

and from (A 2) and (A 5 )  
42' Ts(q2 - 41)1.nt* 

b e  = -tS(42-41)t+ 42.n 

Formula (A6) gives the directions along which we observe diffraction after the 
grating has been distorted by a velocity-field gradient S. Initially, at t = 0, the fringes 
are parallel to the y-axis and the diffracted spots f 1 are aligned along the x-axis at  
f KO. Owing to distortions, the spots move in the diffraction plane ; at time t ,  the 
displacements AK+, and AK- of the two spots are the projections of Aq2 (given by 
A 6) in a vertical plane, (see figure 11). The components of AK+, and AK- on the 

8 is small (< red) and 8 x h / p ,  where h is the wavelength of the probe laser; 
then A aw 

t+- -3 t ,  
4~ ax 

AKT = 

In two-dimensional flows, w = 0 and the components (A 7) reduce to (au/ax) KO t on 
the x-axis, which expresses the change of the interfringe p when the grating 
experiences a pure straining field &/ax; and (au/ay)Kot on the y-axis, which 
measures the rotation of the grating around the z-axis caused by the transverse 
component aulay. 

In  a three-dimensional flow, these two elementary displacements of the diffraction 
spots are disturbed by rotations of the grating around the x- and y-axes. If awlay 
and awlax were large, (A 7) would allow the simultaneous measurement of au/ax, 
au/ay, awlax and awlay : 

However, since 8 is small and, in a Poiseuille flow, the components awlax and awlay 
are of the same order as aulax and au/ay the rotations around the x- and y-axes may 
be neglected. This justifies the analysis given in 2.2. 
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Appendix B 

on a vector k of the reciprocal space. 

gradient field r are given by 
AA = r * A .  (B 1 )  

Now consider three vectors A,, A,, A,, to which we associate the vector k of the 
reciprocal space : 

The purpose of this appendix is to study how a displacement-gradient field acts 

The variations of a direct space vector A under the action of a displacement 

2x 
k =  A,  x A,, 

A 3 )  

where A, x A, is the vectorial product of A, and A, and (Al ,  A,, A3)  is the mixed 
product of the three vectors A,. 

From (B 1) 

Ak= A ,  A,] 
A 3 )  

A 3 )  

but tr  r is the cubic dilatation 

so 
2n: 

Ak= [AA, x A ,  +Al  x AA, - tr r (A,  x A,)]  

One can easily check that: 

(rA,) x A ,  + A ,  x (rA,) - t r  r(Al x A,) = -+(A, x A,)  

(tr is the transposed operator of r ) .  
Finally, from (B 2), (B 3) and (B 4) 

Ak = - trk.  

Formula (B 5 )  gives the change Ak of a reciprocal space vector k under the action 
of a displacement gradient field r .  
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